Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Theor Biol ; 565: 111470, 2023 05 21.
Article in English | MEDLINE | ID: covidwho-2276002

ABSTRACT

The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Viral Load , COVID-19 Testing
2.
Bioeng Transl Med ; : e10391, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2243269

ABSTRACT

The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.

3.
Bioengineering & translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-2058176

ABSTRACT

The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID‐19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self‐dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc‐mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID‐19 in several countries, can effectively trap SARS‐CoV‐2 virus‐like particles in fresh human airway mucus. IN‐006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN‐006 resulted in 100‐fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN‐006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS‐CoV‐2 and other respiratory pathologies.

4.
Front Allergy ; 2: 715844, 2021.
Article in English | MEDLINE | ID: covidwho-1779930

ABSTRACT

Although allergic responses to the mRNA COVID-19 vaccines are rare, recent reports have suggested that a small number of individuals with allergy to polyethylene glycol (PEG), a component of the mRNA lipid nanoshell, may be at increased risk of anaphylaxis following vaccination. In this report, we describe a case of a patient who received an mRNA COVID-19 vaccine, experienced anaphylaxis, and was subsequently confirmed to have anti-PEG allergy by skin prick testing. The patient had previously noticed urticaria after handling PEG powder for their occupation and had a history of severe allergic response to multiple other allergens. Importantly, as many as 70% of people possess detectable levels of anti-PEG antibodies, indicating that the detection of such antibodies does not imply high risk for an anaphylactic response to vaccination. However, in people with pre-existing anti-PEG antibodies, the administration of PEGylated liposomes may induce higher levels of antibodies, which may cause accelerated clearance of other PEGylated therapeutics a patient may be receiving. It is important to improve awareness of PEG allergy among patients and clinicians.

5.
Biophys J ; 121(9): 1619-1631, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1767943

ABSTRACT

Mechanistic insights into human respiratory tract (RT) infections from SARS-CoV-2 can inform public awareness as well as guide medical prevention and treatment for COVID-19 disease. Yet the complexity of the RT and the inability to access diverse regions pose fundamental roadblocks to evaluation of potential mechanisms for the onset and progression of infection (and transmission). We present a model that incorporates detailed RT anatomy and physiology, including airway geometry, physical dimensions, thicknesses of airway surface liquids (ASLs), and mucus layer transport by cilia. The model further incorporates SARS-CoV-2 diffusivity in ASLs and best-known data for epithelial cell infection probabilities, and, once infected, duration of eclipse and replication phases, and replication rate of infectious virions. We apply this baseline model in the absence of immune protection to explore immediate, short-term outcomes from novel SARS-CoV-2 depositions onto the air-ASL interface. For each RT location, we compute probability to clear versus infect; per infected cell, we compute dynamics of viral load and cell infection. Results reveal that nasal infections are highly likely within 1-2 days from minimal exposure, and alveolar pneumonia occurs only if infectious virions are deposited directly into alveolar ducts and sacs, not via retrograde propagation to the deep lung. Furthermore, to infect just 1% of the 140 m2 of alveolar surface area within 1 week, either 103 boluses each with 106 infectious virions or 106 aerosols with one infectious virion, all physically separated, must be directly deposited. These results strongly suggest that COVID-19 disease occurs in stages: a nasal/upper RT infection, followed by self-transmission of infection to the deep lung. Two mechanisms of self-transmission are persistent aspiration of infected nasal boluses that drain to the deep lung and repeated rupture of nasal aerosols from infected mucosal membranes by speaking, singing, or cheering that are partially inhaled, exhaled, and re-inhaled, to the deep lung.


Subject(s)
COVID-19 , Aerosols , Humans , Lung , SARS-CoV-2 , Viral Load
6.
Adv Drug Deliv Rev ; 169: 100-117, 2021 02.
Article in English | MEDLINE | ID: covidwho-966180

ABSTRACT

To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Immunologic Factors/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Humans , Immunization, Passive , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Virus Shedding/drug effects , Virus Shedding/physiology , COVID-19 Serotherapy
7.
J Control Release ; 329: 87-95, 2021 01 10.
Article in English | MEDLINE | ID: covidwho-959922

ABSTRACT

COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Administration, Inhalation , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunotherapy/methods , Injections, Intravenous , Nebulizers and Vaporizers , Secondary Prevention , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL